
Supporting Longevity in an Information Infrastructure Architecture

Karen R. Sollins

MIT Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139 USA

sollins@lcs.mit.edu

1 Introduction

With the growth in the Internet and network-based community, comes an interest in building ap-

plications independently of the information or data on which they will operate. In conjunction with

this divergence of information from application and signi�cant growth in the amount of information

available on the net the issues of longevity are taking a more prominent position. As investment

in information grows, the amount of information that has long-term value also grows. The URLs

(Uniform Resource Locators) used as identi�ers and access methods for Web documents will not,

and in fact even now do not, su�ce. Tying identi�cation to location and access protocol leads

to signi�cant problems as information moves, underlying storage facilities are reorganized, or as

di�erent access protocols are needed. Furthermore, we will experience evolution many dimensions.

Applications and the sorts of information on which they operate will evolve. Existing information

is likely to evolve. The underlying transport mechanisms are continually evolving to meet higher or

new demands. The question we as researchers must ask ourselves is how do we design a system that

is prepared for the problems of longevity, with the long-term future in mind, rather than working

only to solve the problems of the present, as we have so often done.

My current research project is the Information Mesh, the design of an information infrastructure

architecture which has among its primary goals the support of longevity, mobility, and evolvability.

In this note, I will briey summarize the goals and highlights of the architecture of the Information

Mesh. The note will conclude with a description of some of the signi�cant ways in which it addresses

mobility and evolvability. It should be noted that this work is described in more detail in [11, 9].

In this note I will only refer briey to di�erences between the Information Mesh and the World

Wide Web, CORBA and OLE.

2 Information Mesh

The focus of this work is the provision of the commonality needed for the growing and evolving

set of global network based applications. In designing a common infrastructure, one must consider

what is in it and where commonality is not valuable or feasible. Much previous work has focused

on program communications or invocation models. There are those who believe in strict RPC,

or various extensions of RPC providing, for example, ordering among multiple outstanding calls.

Others believe in various group multicast communications paradigms. Yet others believe in message

passing models. Each paradigm has its strengths and weaknesses and is probably \the right"

solution to some set of problems.

Similarly, in addressing the problems of a stable infrastructure, many would suggest that per-

sistent storage is a necessary component. Here again we see a variety of views on service required.



For some the persistent storage of a �le system is adequate. In this case, information or objects will

be transformed into a �le format for storage, to be reconverted as the contents are needed. There

are a variety of models of distributed or network based �le systems, with no agreement on which

semantics for distributed �les is \the right" one. Others believe in various persistent object store

models, with or without \pickled" forms of objects in storage and with or without various forms of

transaction update mechanisms. Again, there is no common agreement on \the right" model, but

rather each has its strengths and weaknesses and should be usable in appropriate situations.

Further understanding reveals a need for a uniform information infrastructure model on top of

which to build either applications or programming environments with their own models of stability

and permanence. We must recognize in providing a single, common information infrastructure

substrate that at least some of the information will both be long-lived and of interest perhaps

beyond the environment and applications within which it was created. It is useful to enable but not

restrict the models needed for di�ering environments. We do not, in contrast, have a requirement

for a single computational model. No one computational model appears at present to be the right

one for all situations and problems. Nor will a single persistent storage model su�ce. In addition,

in considering security, accounting, and billing, etc. it is clear from the recognition that these

network based activities will be occurring across administrative boundaries as well as programming

model boundaries, that no single policy model, or even set of mechanisms to support policies will

su�ce. The work of this project is to provide a simple, extensible information infrastructure model

supported below the level of any applications, which will allow objects to survive and new ones to

evolve unconstrained by the infrastructure, yet supported by it.

2.1 Goals

The primary motivation of this project to provide an information infrastructure that will survive

for a period measured in units of human lifetimes, signi�cantly longer than any such architecture to

date. In considering such a time frame, several issues must be addressed that often are not issues in

solving immediate problems: mobility and evolution in the face of longevity. Over any signi�cant

period of time, information will move both physically, and, perhaps, administratively. For example,

not only may books be moved from one shelf to another or perhaps from one building to another,

but an individual may leave a book collection as a bequest to a library, or two libraries may merge,

forming a new legal and administrative entity to manage the merged collection. In addition, over a

long time period everything imaginable may evolve. First, the supporting mechanisms of transport

and presentation protocols may evolve, either replacing or enhancing what was previously available.

Second, the programming and applications models of information may evolve, requiring information

using new abstraction paradigms. Third, the information itself may evolve.

Thus we identify a set of goals that includes those described above, as well as other more

commonly found in others infrastructure models.

� Longevity: The infrastructure and support of relationships among pieces of information

must be able to survive for periods measured in multiple human lifetimes, possibly longer

than the entities themselves.

� Mobility: Information must be able to move both physically and administratively among

organizations.



� Evolvability: Information itself as well as the clients of it, often programs, in addition to the

infrastructure for accessing it is likely to change with time. The infrastructure must support

the ability to take advantage of such evolutionary changes.

� Ubiquity: The infrastructure must be global. Information and clients should be able to be

anywhere and to move anywhere, both physically and administratively, restricted only by

policies limiting such mobility.

� Modularity and Abstraction: The model of the infrastructure should support the separa-

tion of speci�cation from implementations. This allows for heterogeneity in both the clients

and the potential infrastructure on which they may be built. This in conjunction with the

ability to learn about the abstraction supported permits applications or clients to use infor-

mation created and managed independently of the applications or clients themselves.

� Homogeneous abstract model: The Information Mesh should provide a self-consistent

abstract model of pieces of information and their relationships. A homogeneous abstract

model allows the supporting infrastructure such as transport protocols to evolve and be used

without the applications and clients necessarily needing to know about such a transition.

� Resiliency: Networks and network resources fail unilaterally and unpredictably. The Infor-

mation Mesh will be prone to this as well and hence must provide reasonable resiliency to

such failures, if it is to be useful to potential users.

� Simplicity: Only a simple model, not overburdened with unnecessary mechanism will sur-

vive. Simplicity is critical to both correctness and utility.

� Support of Relationships: The Information Mesh must support the construction of rela-

tionships among pieces of information, that will allow for the expression of the nature of a

relationship, the ability to link into an object without a dependency on the internal repre-

sentation of that object, the ability to link to a link, and a number of other criteria spelled

out in more detail in [11].

The focus on longevity, mobility and evolution distinguish this work from other similar e�orts.

2.2 Object model

The Information Mesh model is an object model, in that all components of within the Mesh are

objects. To be a Mesh object, a resource must have at least one oid or Object Identi�er and support

at least one role. Oids with the attendant hint mechanism provide identi�cation and location, while

roles provide our typing model.

Historically, naming has often encompassed three basic functions, identi�cation, access and

semantic or mnemonic information. Identi�cation is the task of distinguishing one resource from

another. The accessing functionality allows us to �nd, get to, and perhaps use or modify an

object. Finally, some naming schemes, although not all, provide human friendly semantics or at

least mnemonics. URLs, as used in the World Wide Web do all three; they are used as identi�ers

embedded in links in long-lived objects, they specify the location and protocol for accessing the

object, and they often have user-friendly semantics embedded in them. The problem with this is



that when the semantics, location or access protocol changes the URL no longer reects what the

users have come to expect from it.

We have chosen in the Information Mesh to separate these functions and not support human-

friendly semantics within the Mesh. Oids are globally unique, long-lived identi�ers intended not

for human but for computer use. They are part of the infrastructure, on top of which applications

and application domains may reside and a variety of human-friendly naming schemes can be built.

It is in the context of the application domains that we expect human friendly naming schemes to

be supported. In addition, location discovery is based on potentially mutable and evolving hints.

When an object is to be found a set of hints will be used to suggest locations or location translation

services that may know of locations. It is recommended that hints accompany the transmission of

an oid. In addition, we expect there to be hint servers as fallbacks for discovering hints. When an

object moves, in the simplest case this will be reported to a resolution service, rather than needing

to broadcast the fact widely. If a resolution server no longer serves a particular oid, it may return

to the client alternative hints of other location servers to try. Thus the set of hints can evolve and

track mobility. Uniform Resource Names or URNs as de�ned in the Internet Engineering Task

Force by Sollins and Masinter[10] reect much of our thinking. Work is progressing both at MIT

and in the IETF on URN resolution and hints. (See the following unpublished documents for the

current status[3, 4, 5].)

The second major aspect of the Mesh object model is the typing model, based on roles. We

call them roles because as with human playing roles, an object can play more than one at any

time. In addition, the set of roles an object plays may evolve with time. Roles are de�ned in a

hierarchy, supporting multiple inheritance, with a single root in the object role. There are three

aspects to role de�nitions, a set of actions, a set of parts, and a set of makers. In a role de�nition

elements of each set may be either required or optional. There may be multiple implementations of

any particular role. The set of actions of a role de�nes the role's abstract functionality. The set of

parts de�nes an abstract structure for an object playing the role. And the set of makers de�nes the

abstract ability to create new objects playing the role in question. A role de�nition is abstract in

that it does not determine the implementation or representation that will be used. The intention

here is to gain the advantages of modularity by use of abstraction.

Roles reect ideas from a number of di�erent sources. Functional abstraction as reected in our

actions is provided by information models such as CORBA (called methods in CORBA interfaces)

and languages such as Clu (called procedures) and C++. The termmethod has a di�erent meaning in

Lisp languages such as CLOS where it implies the implementation of a generic procedure. We have

therefore chosen the new term action. Parts reect an abstraction from the class based languages

such as CLOS that specify the structure of an object. Makers come directly from Liskov's Theta

language[6].

In comparison, di�erent choices have been made in the World Wide Web[1], CORBA[8] and

OLE[7] (and in particular COM which is the underlying object support in OLE). With respect to

naming the Web uses URLs that merge the three functions of identi�cation, access, and semantics,

complicating issues of mobility and evolution. CORBA supports ORBs (object request brokers).

An Orb can be distributed and supports unique names for all objects within the ORB. To name

an object in another ORB, a new name is composed of the ORB's name and the name within the

ORB. This has the advantage that naming can evolve completely independently within an ORB and

the namespaces can be federated. It has the disadvantage that if an object wants to move across



ORB boundaries it will need a new name, negating the utility of the old name for it embedded

in existing, perhaps immutable, objects, unless forwarding pointers are maintained by the original

ORB forever. Objects can only easily move within an ORB. OLE at present simply does not support

distributed naming. The Web model of typing is based on some combination of semantics in the

URL, the protocol in use, and heuristics based on the content of the object. There is a proposal to

support string labels to identify \types" with no particular model of management of the meaning

of the strings. CORBA supports a typing model very similar to ours, although abstract structure is

given much less importance and in the reference documents its use is discouraged, while OLE does

not support inheritance, believing that the problems of versioning in a type inheritance scheme

outweigh any advantages.

3 Several Issues in Realizing the Information Mesh

There are several speci�c issues that have arisen in providing a substrate such as the Information

Mesh: oid or name resolution, links, and security. Each is addressed here briey.

3.1 Name resolution

As suggested above, with the separation of oids or names from location information, there is a need

for name resolution. Furthermore, given that objects will move and storage server may not always

be available, we recognize that the location information must be both mutable and as resilient

to failure as possible. Therefore location information is embodied in hints, that suggest locations

which may be able to further the process of locating an object. A hint may be an address at which

the object was last seen or several such addresses if it is cached or replicated. A hint may also help

in �nding a resolution service that may know of the location of the object. There may be both

authoritative and non-authoritative resolution services. This level of indirection allows for updates

of location information to be made in only one or a small number of places, but to be found by many

clients. In all cases, it is possible that the response to a query will be to return to the client more

hints. As a further backup mechanism, if all known hints fail, there will be a more authoritative,

more complex to use, global mechanism for discovering hints. This fallback mechanism is under

discussion and design both in our project and in the IETF[3, 4, 5]. In general, hints will be

exchanged when references to objects are exchanged; for example, if one person recommends an

object to another, not only will the oid or URN be passed but also a set of hints for �nding the

object should also be transferred. These can be locally cached; if a search for the object occurs,

the set of hints may be modi�ed to reect the experience. Hence a modi�ed set of hints may be

passed along to someone else.

3.2 Links

Since links must also meet our objectives as set out in Section 2.1, the object model of the Informa-

tion Mesh provides a clean, consistent basis for links; links are �rst class objects in the Information

Mesh, and all links play the link superrole, and possibly subroles of it. Because links are �rst class

objects, we can refer to a link by its oid and de�ne the nature of its relationship by the role it plays.



Perhaps the most important feature of the role model with respect to links is the ability to

de�ne an abstract structure. The part mechanism allows us to de�ne the abstract components of

an object, that it must guarantee to support in any implementation and representation. Thus a

link can refer to a part of an object and be guaranteed that that reference will remain meaningful

through transitions to alternative implementations. It should be noted that this does not imply

immutability in all objects to which links are created. Links may fail for several reasons. The

object itself may go away or the component may go away. A book may simply be withdrawn, or

its chapters may be reorganized to reduce the number of chapters. If a link has been created to

\chapter 7" of the book and the book no longer has seven chapters, the link is no longer valid.

On the other hand, if the chapters were originally represented by pointers into a large bu�er of

characters and later are represented by a set of bu�ers in a list, we do not need to know that, but

can continue to refer to the chapters as chapters.

The part model also allows a link to contain parts, easily distinguishing the di�erent endpoints

of a link. Thus, for example, a multi-part link such as the relationship involved in purchasing a car

may involve the buyer, the seller, and the loan organization helping the buyer pay for the car. Links

that are �rst class objects with names, roles, and the ability to link into the abstract structure of

the endpoints provide a richer and much more long-lived infrastructure than a simple hypertext

model such as the HTML model of the World Wide Web. We have published more detail on this

issue[11].

3.3 Security

Security as mentioned earlier represents a dilemma. On the one hand, there can be no one policy

or set of mechanisms that will su�ce. Simultaneously, if an infrastructure into which access control

can be �t is not provided, a model such as ours will not succeed because security will be modelled

completely di�erently in each locality. In addition, the encapsulation and abstraction paradigm of

the Information Mesh has the problem that it leads to a model in which each object is provides

a security perimeter of its own. This is contrary to the current trend of providing �rewalls to

guarantee a consistent and managed security perimeter around an organization or community.

Again, the object model of the Information Mesh provides us with a solution. If each security

domain is considered to be an object, it can support policies using the mechanisms it chooses.

Other security domains can be nested within it or cooperate if an object is in two overlapping

security domains. The object model provides for an abstract interaction among security domains.

The particular mechanisms used by a speci�c domain can evolve with time by providing new

implementations, while supporting an abstract interface to the outside world. This work was

explored in the context of our project by Condell[2].

4 Conclusion: Resiliency to Mobility and Evolution

We conclude by highlighting how it is that the Information Mesh addresses the problems of mo-

bility and evolution. If we do not support mobility and evolution, we will discover signi�cant

problems down the road, as we make a growing investment in information that becomes un�ndable

or inaccessible.



The separation of identi�cation from discovery of location allows for much greater exibility

with respect to mobility. An object must report a new location to some service in order for it to be

found there, but does not need to report that to every site that has a reference to it. The evolvable

hint mechanism allows for that. Thus, for example, links remain valid, even if their endpoints move.

With respect to evolution, the role model allows objects to evolve, implementations to evolve,

and the application space to evolve to use new sorts of objects. By requiring that every role

de�nition include the action of get-roles, an object will always be able to report which roles it

plays. Since all objects must play the object role at least the question can be asked in that context.

If the representation of an object changes, since links will be able to link only to abstract parts of

an object, links will remain valid.

In conclusion, we have built a prototype system, but are now exporting the ideas to the Web

by building services to provide these functions in the Web context.

References

[1] T. Berners-Lee et al., The world wide web, Communications of the ACM, 37(8):76-82,

August, 1994.

[2] M. Condell, A Security Model for the Information Mesh, MIT/LCS-TR-691, June 1996.

Also thesis for the Master's of Engineering degree.

[3] L. Daigle, P. Faltstrom, R. Iannella, A Framework for the Assignment and Resolution

of Uniform Resource Names, Internet Draft draft-daigle-urnframework-00.txt, June, 1996.

[4] R. Daniel and M. Mealling, Resolution of Uniform Resource Identi�ers using the

Domain Name System, Internet Draft draft-daniel-naptr-00.txt, June, 1996.

[5] L. Girod and K. Sollins, Requirements for URN Resolution Systems, Internet Draft

draft-girod-urn-res-require-00.txt, June, 1996.

[6] B. Liskov et al., Theta Reference Manual, Programming Methodology Group Memo 88,

February, 1995.

[7] Microsoft OLE 2.0 Design Team, Microsoft OLE 2.0 Design Speci�cation,Microsoft Devel-

opment Library, April, 1993.

[8] Object Management Group, CORBA: Architecture and Speci�cation, The Object Man-

agement Group, August, 1995.

[9] K.R Sollins, Extending the Network Model to an Information Infrastructure: The

Information Mesh, unpublished, available from <http://ana-www.lcs.mit.edu/anaweb/ps-

papers/sollins-extend.ps>, January, 1996.

[10] K.R. Sollins and L. Masinter, Requirements for Uniform Resource Names, Network Working

Group RFC 1737, February, 1995.

[11] K.R. Sollins and J. R. Van Dyke, Linking in a Global Information Infrastructure, Proc.

Fourth World Wide Web Conference, Boston, MA, December, 1995.


